Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

CO2 Mixed Fuel Combustion System for Reduction of NO and Soot Emission in Diesel Engine

1997-02-24
970319
We propose a new concept on simultaneous reduction of NO and soot emissions in Diesel engine exhaust by the diesel fuel oil (n-Tridecane) with liquefied CO2 dissolved. The CO2 dissolved fuel is expected to undergo flash boiling or gas separation when being injected into the combustion chamber and improve spray atomization and mixing process both of which are primary factors to govern soot formation. Also the internal EGR effect caused by CO2 injected with the fuel is expected to NO formation. In order to assess this concept, combustion experiments were carried out using a rapid compression and expansion machine. Thus, flame characteristics and heat release rate were analyzed for the combustion process of diesel fuel and CO2 mixed fuel. And, it is revealed that the diesel fuel-liquefied CO2 mixed fuel can successfully reduce NO emission in a diesel combustion system.
Technical Paper

New Concept on Lower Exhaust Emission of Diesel Engine

1995-09-01
952062
One of countermeasures for exhaust emissions from a diesel engine, especially, DI diesel engine, is the use of a super high pressure injection system with a small hole diameter. However, the system needs greater driving force than that with normal injection pressure, and its demerit is increase in NOx, although soot is decreasing. Then, authors propose the new concept on the simultaneous reduction of NOx and soot. The concept is that the utilization of flash boiling phenomenon in a diesel engine. The phenomenon can be realized by use of the injection of fuel oil with CO2 gas dissolved. Flash boiling facilitates the distinguished atomization of fuel oil and CO2 gas contributes to realizes the internal EGR during combustion. Fundamental information on the characteristics of a flash boiling spray of n-tridecane with CO2 gas dissolved is described in this paper, as a first step.
Technical Paper

Flow Characteristics in Transient Gas Jet

1995-02-01
950847
The combustion of a diesel spray includes very complex processes, that is, atomization, evaporation, diffusion, turbulent mixing and burning. On the other hand, there are no phenomena of atomization and evaporation in the combustion of a transient gas jet. However, the latter jet can be treated as a fundamental of the former spray. From the standpoint mentioned above, acetylene gas was injected into the ambient during short duration as a transient gas jet and its flow characteristics were investigated by means of photography with a sheet of laser light and LDV to detect the turbulent vortex generated in the boundary layer between it and surroundings, in the experiments presented here. And the experimental results show that the jet itself is divided into four peculiar regions and the modelling of each region is carried out by use of the results to understand the mixture formation process owing to the turbulent diffusive mixing.
Technical Paper

Analysis of Knocking Mechanism Applying the Chemical Luminescence Method

1995-02-01
951005
One of the most effective means of improving the thermal efficiency and the specific fuel consumption in spark ignition engines is the increase of the compression ratio. However, there is a limit to it because of the generation of knocking combustion due to the rise of temperature and pressure in the unburnt mixture. Also in turbo charged spark ignition engines, the ignition timing cannot be advanced until MBT in order to avoid the knocking phenomena. Generally speaking, it is very difficult to investigate the phenomena in an actual engine, because there are many restriction and the phenomena are too complex and too fast. According-ly, it is advantageous to reveal the phenomena fundamentally, including the autoignition process of the end-gas by using simplified model equipment. Therefore, a rapid compression and expansion machine (RCEM) with a pan-cake combustion chamber was designed and developed for the experiments presented here.
Technical Paper

Modelling of Atomization Process in Flash Boiling Spray

1994-10-01
941925
This paper presents the analysis of atomization and vaporization processes in a flash boiling spray based on experimental results obtained from injection systems in the suction manifold of a gasoline engine. Two kinds of liquid fuel, n-Pentane and n-Hexane, were injected into quiescent atmosphere at room-temperature and low-pressure through a pintle type injector with electronic control. The spray characteristics of both fuels below various atmospheric pressures were investigated in detail by taking photography. Then, in the region of flash boiling, where the back pressure was below the saturated vapor pressure of fuel, the bubble nucleation process due to the flash boiling was modelled by both the measurement results of bubble and the nucleation rate equation using the degree of superheat of the liquid fuel.
Technical Paper

Vizualization of Evaporative Diesel Spray Impinging Upon Wall Surface by Exciplex Fluorescence Method

1992-02-01
920578
A single diesel spray of n-decane which was miscible with a small quantity of exciplex dopants was injected from a hole nozzle into a quiescent high-temperature and high-pressure atmosphere of nitrogen, and was impinged in a normaldirection upon a flat wall with elevated temperature. This experiment was to serve as a simplified model of the actual state in a combustion chamber of diesel engines. When a thin sheet of laser light from Nd:YAG laser is passing through the cross section of this spray containing its central axis, it is able to generate fluorescent emissions from vapor and liquid phases in this evaporating spray. Then, clear 2-dimensional images concerning the concentration distributions of vapor and liquid phases were obtained simultaneously, by an exciplex fluorescence method using an image-intensifier and a CCD camera system. The dispersion processes of vapor and liquid phases in this impinging spray near the wall were analyzed with an image analyzer.
Technical Paper

Combustion in a Small DI Diesel Engine at Starting

1992-02-01
920697
It is unavoidable that a DI diesel engine exhausts a blue and white smoke at starting, especially in the cold atmosphere. In the experiments presented here, a small DI diesel engine started under the conditions of coolant and suction air whose minimum temperatures were 255 K and 268 K, respectively. The flame was photographed by high-speed photography, the temperature of flame and the soot concentration were measured by two-color method, and CO2 concentration was detected by luminous method. The engine cannot be started over several cycles when the coolant temperature is 255 K and suction air temperature is 268 K. As the temperature of coolant and suction air are decreasing, the maxima of the cylinder pressure, the flame temperature, the soot concentration and CO2 concentration are decreasing. Luminous small dots or small lumps of flame become scattered in the piston cavity.
Technical Paper

Characteristics of Combustion in an IDI Diesel Engine with a Swirl Chamber Made of Ceramics

1992-02-01
920696
There is a concept that the increase in the temperature of charge in a combustion chamber and the shield of heat transferred through a chamber wall can facilitate the oxidation of soot and reduce the discharge of soot from the engine. In the experiments presented here in, an IDI diesel engine was used to inspect the concept. The engine was installed a bigger sized cylindrical swirl chamber which was equipped with two flat quarts windows, in order to observe the combustion phenomena and to apply the optical measurement. The experiments were carried out using two types of divided chambers, that is, the swirl chamber made of ceramics and that made of steel, to examine the the effects mentioned above.
Technical Paper

Knocking Phenomena in a Rapid Compression and Expansion Machine

1992-02-01
920064
In this study, a rapid compression and expansion machine(RCEM) with a pancake combustion chamber was designed to investigate fundamentally on the knocking phenomena in spark ignition(S.I) engines. This RCEM is intended to simulate combustion in an actual engine. The homogeneous pre-mixture of n-pentane and air was charged into a quiescent atmosphere of the chamber. Then, the combustion field become simpler in this machine than it in a real S.I. engine. Also, the combustion phenomena, that is a cylinder pressure history, the behavior of flame propagation and so on, with high reproducibility are realized in this machine. The phenomena caught in this experiment were so-called low speed knocking. And, this knocking characteristics such as a knock intensity and a knock mass fraction were revealed by the cylinder pressure analysis varying the charge pressure and the equivalence ratio of the mixture, a compression ratio and an ignition timing.
Technical Paper

Heat Flux between Impinged Diesel Spray and Flat Wall

1991-11-01
912460
In a high-speed DI diesel engine, fuel sprays impinge surely on a wall of a piston cavity. Then the phenomenon of the heat transfer between the impinged spray and the wall appears and it has the strong effect on the combustion processes of the engine. The purpose of this study are to clarify basically the heat transfer characteristics. In the experiments, the fuel was injected into the quiescent inert atmosphere with a high temperature under high pressure field, and an evaporative single diesel spray was impinging upon a flat wall. And, the temperature distribution on the wall surface in a radial direction was detected by the Loex-Constantan thin film thermo-couples. Thus, the heat flux between the impinged spray and the wall surface was calculated from the temperature profile within the wall by Fourier's equation using the finite difference method, under the assumption of the one-dimensional heat conduction.
Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Characteristics of a Diesel Spray Impinging on a Flat Wall

1989-02-01
890264
In a small high-speed DI diesel engine, injected fuel sprays impinge on the wall of piston cavity. Discussion and analysis of the combustion phenomena in the diesel engine demand the measurement of the characteristics of the impinging spray. In the experiments presented here, diesel fuel oil was injected into a high pressure chamber in which compressed air or CO2 gas at room temperature was charged. The single spray was impinged on a flat wall at a normal angle. The growth of the spray was photographed, not only with transmitted light but also with scattered light through a narrow slit. The temporal and spatial distribution of the droplets density in the impinging spray applying the concentric circle model was calculated using the data of the laser light extinction method. From these results, the detailed information concerning the droplets density in the impinging diesel spray was obtained.
Technical Paper

Distribution of Fuel Droplets, Hydrocarbon and Soot in Diesel Combustion Chamber

1983-02-01
830456
Distribution of injected fuel droplets, total hydrocarbon concentration and soot concentration in the combustion chamber of a diesel engine with a swirl chamber have been measured microscopically with regard to the time and the space by means of optical method. As a result of this study, effect of the swirl flow on atomized droplet distribution, relation between the droplets and hydrocarbon concentration, and relation between the change in concentration gradient of hydrocarbon with the time and the velocity of the swirl flow, and effect of non-luminous flame on the time of heat release rate raising period have been obtained. And from spatial distributions of hydrocarbon concentration, soot concentration, and local temperature in the combustion chamber at each time, the locational characteristics of soot generation are clarified. Further, effects of hydrocarbon and local temperature on soot generation have been considered.
X